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Abstract

As compared to other animals, humans are particularly skilled
at using and improving tools and other solutions to problems
that were first discovered by other people. Although the human
capacity for cumulative cultural evolution is well-known, the
effectiveness of inheritance as a form of problem solving is
an area in need of further research. We report an experiment
designed to understand how effectively solutions to problems
accumulate over generations of problem solving. Using a tool-
discovery game, we found that participants were consistently
able to discover more tools in a 25 minute session than their
ancestors. Participants who inherited more tools required more
time to recreate them, but their rate of new tool discovery was
not slowed. In addition, we show that participants were able
to recreate the tools they inherited more efficiently than their
ancestors, but that inheritance did not confer any improvement
in future problem solving. We discuss the limitations of this
work, and motivate future directions.
Keywords: cultural evolution; transmission chain; iterated
learning

Introduction

Humans are effective problem solvers, having solved a wide
range of problems related to foraging, hunting, and preparing
food, while surviving predators, each other, and a large range
of terrestrial environments (Boyd, 2018; Fernández-Armesto,
2001). What has enabled our success in being able to solve
such a diverse set of problems? Some have suggested that the
answer lies more in our ability to inherit knowledge from oth-
ers than our ability to make discoveries by ourselves (Rich-
erson and Boyd, 2005; Henrich, 2015; Boyd, 2018). Humans
possess a number of advanced social learning abilities includ-
ing teaching through verbal instruction and imitation that pro-
vide reliable ways of transferring problem solving knowledge
across individuals (Dean et al., 2012). If problem solving
knowledge can be acquired via social learning, then future
generations can adapt and improve it, allowing cultures to ac-
cumulate technological complexity over generations.

However, the ability to learn socially from others is not
sufficient to explain cumulative cultural evolution. Although
social learning was once thought to be rare in the animal king-
dom (e.g., Thorndike, 1898), it has now been documented in a
range of species from chimps (Whiten et al., 1999) to fish (La-
land and Williams, 1997) and even bees (Alem et al., 2016).
If cumulative cultural evolution depended simply on social
learning, we might expect these species to likewise show ev-
idence of cumulative cultural evolution, yet such evidence is
notably lacking (Dean et al., 2012; Tennie et al., 2009; but
see Hunt and Gray, 2003; Sanz et al., 2009).

Humans, in contrast, have demonstrated a remarkable abil-
ity to adapt and improve the tools and other innovations dis-
covered by others. The history of human technology is argued

to be better understood as a process of gradual refinement
and repurposing rather than punctuated advances brought by
the discoveries of rare geniuses (Basalla, 1988; Solé et al.,
2013). Rapid refinement of inherited innovations has not
always been the case over the course of human history, as
demonstrated by the long periods in the archaeological record
of slow or stagnant growth in stone tool complexity (de la
Torre, 2011; Lycett and Gowlett, 2008). Since then, as hu-
mans evolved more robust ways of transmitting cultural in-
formation, future generations were able to more quickly learn
the skills honed by their ancestors, thus giving them more
time to make improvements to those technologies (Sterelny,
2012; Kaplan and Robson, 2002). On this view, human cul-
tural evolution has been defined not by our ability to copy
the skills of our ancestors, but by the ability to exceed and
improve them.

We investigated the human propensity to exceed our an-
cestors in a problem solving task using a transmission chain
paradigm (Fig. 1). Previous research using this paradigm has
found that problem solving performance can accumulate over
generations (Caldwell and Millen, 2008; Wasielewski, 2014;
Zwirner and Thornton, 2015). These experiments however
typically investigate individuals’ performance about a single
problem (such as building paper airplanes or baskets). Yet,
cumulative cultural evolution allows humans to solve more
diverse and ever larger sets of problems. Larger sets of prob-
lems can only be solved when larger amounts of informa-
tion are transmitted between generations, which is likely to
result in increasing acquisition costs for learners (Mesoudi,
2011). Despite its pivotal importance, the effects of increas-
ing amount of information on learners’ performance have not
been investigated experimentally.

Here we allow future generations to inherit symbolic infor-
mation (“recipes”) about how to recreate the tools that had
been discovered by an ancestor and measure the ability of
participants to recreate and exceed the tools they inherited. In
addition to asking whether participants were able to exceed

Figure 1. Iterated problem solving paradigm. Participants
were assigned to generations within chains. Each participant
completed the same problem solving task for 25 minutes. Par-
ticipants in generations after the first began the problem solv-
ing task with the solutions that were discovered by the previ-
ous generation.
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the total number of tools discovered by their ancestor, we
also asked whether inheritance influenced the way in which
future problems were solved. To answer this question, we
analyzed whether participants who inherited more tools from
their ancestors were more or less effective at discovering new
tools. We also analyzed the guessing strategies used by par-
ticipants who benefited from inheritance as compared to first
generation participants who did not inherit from any ances-
tor. These analyses are used to address potential downstream
consequences to iteratively inheriting from a previous gener-
ation.

Methods

To understand how solutions to problems accumulate through
vertical transmission, we used a transmission chain paradigm
where participants were assigned to a single generation
within a four-generation chain. Each participant attempted
the same tool discovery task for 25 minutes. The recipes for
how to create the tools that each participant had discovered by
the end of the session were passed on to be inherited by a par-
ticipant in the next generation of the chain. Thus, participants
assigned to generations after the first began the experiment
with information about how to create the tools inherited from
the previous generation.

Participants played the “Totem” game adapted from Derex
and Boyd (2015). Their task was to discover how to build
tools with the ultimate goal of creating “a sacred totem to ap-
pease the gods.” To build a totem, participants first needed to
construct an axe out of three independently discovered tools:
a refined stick used as a handle, a sharpened rock for the
blade, and a string wound from bark fibers for binding (Fig.
2). More advanced tools produce larger and more intricate
totems.

Participants discovered new tools by combining existing
items. Participants could refine individual items, or combine
up to four items at a time (with replacement), meaning the
initial six items could form a total of 209 combinations. Of
all possible combinations, very few resulted in new items.
For example, of all the guesses that could be formed from the
initial items, only three (1.4%) yielded new tools.

As tools are accumulated, the number of possible com-
binations that can be made with those tools increases expo-
nentially such that the discovery of later tools was less likely
to happen by chance alone. Based on previous research us-
ing this task, we know that participants are far more likely
to make some guesses than others, indicating they are using
common knowledge acquired outside the lab to generate com-
binations. For example, once discovering an axe, participants
quickly discover that they can use the axe to chop down a tree,
regardless of the other tools they may have at the time. At the
same time, participants do not find all tools equally intuitive,
and the difference in combinatorial complexity should not be
ignored. In our results, we report performance based on both
measures.

Once a tool was discovered, the recipe for its production—

Figure 2. A sample of the solution landscape. The top row
of 6 items were available to participants at the start of the
game. Tools could be produced through the combination of
different items (more than one arrow points to the item) or the
combination of the same items (a single arrow points to the
item). The axe is required to construct the first totem pole.

a list of the items that had to be combined in order to pro-
duce the tool—was recorded in an innovation record. Partic-
ipants could review their past innovations and see the recipes
for their previous discoveries. Participants assigned to gen-
erations after the first inherited the innovation record of the
previous generation participant. From the beginning of the
experiment, these participants could review the recipes for all
the innovations that had been discovered by their ancestor.
Note that the participants inherited the recipes, but not the
tools themselves. In order use these tools in further combina-
tions, the tools and all of their constituent parts first had to be
recreated.

Participants

Participants were recruited from the UW-Madison student
body and received course credit in exchange for participa-
tion. Each participant was assigned to a single generation of
a four-generation chain. Data was collected for a total of 42
complete chains (N=168 participants).

Results

Our results are presented in three sections. First we report
the total number of tools discovered by each generation along
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Figure 3. Tools by generation. Each of the thin blue lines is a
chain. The thick black line shows the model predictions with
1 standard error.

chains. Second we report the number of new tools discovered
relative to the number of tools inherited (as opposed to gener-
ation). Also in the second section, we quantify the amount of
time each participant spent recreating inherited tools versus
discovering new ones, and test whether the number of tools
inherited had an impact on the rate of new tool discovery. In
the last section, we compare first generation participants who
did not inherit from anyone to participants in generations 2-4
who inherited at least some tools from an ancestor in an at-
tempt to understand whether inheritance confers any benefit
to problem solving beyond the inherited solutions.

Tools by generation

We found that participants in later generations were able to
discover more tools in the same amount of time than their
ancestors (Fig. 3). To quantify these gains, we fit a hier-
archical regression model to the number of tools discovered
in each generation with polynomial contrasts for generation
and random effects for chain. On average, second generation
participants were able to discover 3.3 more tools than first
generation participants, b = 3.27 (SE = 0.65), t = 5.04. This
effect decreased by -0.4 each generation for third and fourth
generation participants, b = -0.39 (SE = 0.20), t = -2.00.

It is worth noting that as tools are accumulated, the num-
ber of possible combinations that can be produced increases
exponentially. As a consequence, the discovery of later tools
was less likely to happen by chance alone. To take the size
of the combinatorial space into account, rather than scoring
each tool equally, we instead scored each tool based on the
size of the combinatorial space at the time it was discovered.
Refitting the same hierarchical regression model as above,
this time predicting the sum of tool scores discovered in each
generation, we again found that tool scores increased linearly
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Figure 4. Tools by inheritance size. A. Number of tools cre-
ated relative to those inherited. The dotted line is a reference
with slope=1 such that points above the line indicate future
generations exceeding their ancestors. B. Number of new
tools relative to those inherited. The same reference line is
now shown horizontally. The error range shows the model
predictions with 1 standard error.

with each generation, b = 0.04 (SE = 0.01), t = 4.92, but in
this model, the improvement in tool score was not found to
decrease for later generations, b = -0.0001 (SE = 0.0059), t =
-0.01.

Tools by inheritance size

Because there is no difference between a second generation
participant who inherits 10 tools and a fourth generation par-
ticipant who inherits the same tools, we also looked at prob-
lem solving performance relative to the number of tools that
were inherited regardless of generation (Fig. 4). As the num-
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Figure 5. Learning rates. Correlation between the number
of tools inherited and the time it took to recreate the inher-
ited items. Outliers who were appear unwilling or unable to
recreate the inherited items are shown as X’s, but included in
all analyses.

ber of inherited tools increased, the number of new tools dis-
covered decreased, b = -0.18 (SE = 0.06), t = -2.92 (Fig. 4B).

Participants who inherited more tools also required more
time to recreate those tools. Participants took on average 8.2
minutes of the 25 minute session (32.8%) to recreate the in-
herited tools—a portion of the experiment we refer to as the
learning period. The length of the learning period correlated
positively with the number of inherited tools, r = 0.6 (Fig. 5).

We next asked whether inheriting more tools had an impact
on the rate of new tool discovery, controlling for the length
of time spent recreating inherited tools. We fit a hierarchi-
cal regression model predicting the number of new tools dis-
covered relative to the amount of time out of the 25 minute
session available to discover new tools (Fig. 6). The overall
discovery rate was 5.6 minutes per tool (0.18 innovations per
minute), b = 0.18 (SE = 0.04), t = 4.06. This rate was not
found to vary based on the number of inherited tools, as re-
vealed by comparing a model predicting novel tools from dis-
covery time alone to one predicting novel tools from the in-
teraction between discovery time and inheritance size, c2(2)
= 0.5430, p = 0.762.

Guesses per tool

In this section, we compared first generation participants who
did not inherit from anyone to participants in generations 2-
4 who inherited at least some tools from an ancestor. We
compared these two groups in terms of the number of guesses
required to discover each tool.

To count the number of guesses that were required for each
tool, we tallied all guesses made from the moment in which
a new tool was eligible for discovery until that tool was dis-
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Figure 6. New tool discovery rates. Discovery time is the
amount of time out of a 25 minute session dedicated to dis-
covering new innovations that were not discovered by an an-
cestor. The line shows the predictions of the hierarchical re-
gression model with 1 standard error. The slope of this line
did not significantly vary based on the number of inherited
tools. Participants marked with X’s are the same as in Fig. 5.

covered. A new tool was eligible for discovery once all of the
items required to produce the new tool had been discovered.

We fit a hierarchical linear model predicting the number of
guesses per tool based on generation (Generation 1, Genera-
tions 2-4) with random effects by tool. Tools that have been
produced by Generations 2-4 were assigned to one of two
classes: those that were inherited from an ancestor, and those
that were discovered through a trial-and-error process. This
allowed us to test whether the benefit to inheritance was re-
stricted to reducing the number of guesses for inherited items,
or whether inheritance had any effect on future guessing be-
haviors.

As expected, participants from generations 2-4 made fewer
guesses per tool than when the same tools were attempted
in the first generation, b = 15.36 (SE = 4.92), t = 3.12 (Fig.
7A). This effect demonstrates the benefit of inheriting from
a previous generation in providing a shortcut to discovering
these tools.

However, we did not find any evidence that inheritance had
an effect on the number of guesses per new tool, b = -3.97
(SE = 4.77), t = -0.83 (Fig. 7B). This finding suggests that
although inheritance benefits participants in recreating inher-
ited solutions, it does not confer any benefits to future prob-
lem solving.

Discussion

We found that participants were consistently able to solve
more problems in a single 25 minute session than their an-
cestors, and thus were able to cumulatively improve upon the
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Figure 7. Guesses per tool by participant generation. Each
line is the average number of guesses it took to discover a
particular tool. Error bars show 1 standard error of the model
predictions. A. Inherited tools. B. Discovered tools, not in-
herited from an ancestor.

solutions they inherited. All participants were expected to
be able to recreate the tools they inherited, but whether they
could discover new tools, beyond those inherited, was un-
known. Given the combinatorial complexity of the solution
landscape, participants were unlikely to strike upon benefi-
cial combinations by guessing at random. Because of this,
some participants were unable to discover any new tools. But
most did discover new tools, even when inheriting an already
large number of previously discovered tools.

We also explored the impact of inheriting solutions on
problem solving performance. We found that participants
who inherited more tools tended to discover fewer new tools
than their ancestors, suggesting that later generation partic-
ipants had a harder time exceeding their ancestors. Part of

the reason is that later generation participants needed more
time to recreate the tools they inherited. Controlling for the
amount of time each participant had to discover new tools (as
opposed to recreating inherited tools) did not reveal an effect
of inheritance size on the rate of new tool discovery. Finally,
we investigated whether the benefit of inheritance in terms
of guesses per tool extended beyond the inherited tools, and
found that although inheritance clearly reduced the number
of guesses required for inherited tools, it did not confer any
benefit to future problem solving performance.

Our conclusions are limited by the design of the solution
landscape in the Totem game, and the restriction in our meth-
ods to a single problem solving strategy. The sparsity of the
solution landscape, where many combinations can be made
but very few yield new tools, indicates that in order to succeed
participants must use prior knowledge to help form combina-
tions that are most likely to yield new tools. This challenges
the notion that the difficulty of a particular tool is directly re-
lated to its combinatorial complexity. In addition, we believe
the accumulation of problem solving knowledge over gener-
ations must be compared with the accumulation of problem
solving knowledge through other forms of problem solving
that do not involve vertical transmission.

More than any other animal, humans are particularly
skilled at inheriting and improving tools and other solutions
to problems, but whether the ability to inherit from others has
effects on problem solving beyond giving a head start to in-
dividual learning is not known. Although much work is still
needed to fully understand the human propensity for cumula-
tive cultural evolution, we believe our research is a valuable
contribution to ongoing efforts to understand how and why
human culture is so integrally cumulative.

Open science practices

The materials, data, and code used to support the con-
clusions of this paper are available via the Open Science
Framework page for this research at osf.io/vf2wk, DOI:
10.17605/OSF.IO/VF2WK.
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